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The present work aims at comparing the performance of several quadratic programming
(QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping
schemes for simulation of multibody systems are formulated as linear complementarity prob-
lems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemke-
type algorithms and solvers such as the PATH solver proved to be robust. However, for
large systems, the PATH solver or any other pivotal algorithm becomes unpractical from a
computational point of view. The convex relaxation proposed by one of the authors allows
the formulation of the integration step as a quadratic program, for which a wide variety of
state-of-the-art solvers are available. In what follows we report the results obtained solving
that subproblem when using the QP solvers MOSEK, OOQP, TRON, and BLMVM. OOQP
is presented with both the symmetric indefinite solver MA27 and our Cholesky reformula-
tion using the CHOLMOD package. We investigate computational performance and address
the correctness of the results from a modeling point of view. We conclude that the OOQP
solver, particularly with the CHOLMOD linear algebra solver, has predictable performance
and memory use patterns and is far more competitive for these problems than are the other
solvers.
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1. Introduction

The dynamic rigid multibody contact problem is concerned with predicting the
motion of several rigid bodies in contact and is one of the fundamental paradigms
in modern computational science. It appears in the description of fuel motion in the
pebble bed reactor [30], in the compaction of nanopowders [13, 37], and in the study
of biological membranes [32, 36, 47, 55]. Such simulations are also used extensively
in structural engineering [25], pedestrian evacuation dynamics [35], granular matter
[45], robotics simulation and design [26], and virtual reality [5].
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Approaches used in the past for the numerical approximation of rigid multi-
body dynamics with contact and friction include piecewise DAE approaches [34],
acceleration-force linear complementarity problem (LCP) approaches [12, 43, 54],
penalty approaches [21, 42, 48, 49], and velocity-impulse LCP-based time-stepping
methods [9, 10, 44, 50, 51]. LCP-based time-stepping schemes for simulating multi-
body systems are formulated as LCPs with copositive matrices. Such LCPs are gen-
erally solved by means of Lemke-type algorithms, and solvers such as the PATH
solver [20, 27] have proved to be robust. For large systems (beyond a few thou-
sand contacts), however, the PATH solver or any other pivotal algorithm becomes
impractical from a computational point of view [8, 53].

The computational difficulties associated with the standard frictional LCP for-
mulation cannot be avoided even for small friction coefficients. In this context, in
[7], a simple example is used to show that the solution set of the underlying LCP
fails to be convex for any nonzero friction coefficients and therefore no polynomial
time algorithms are known to exist.

When solving large-scale multibody dynamics, a relaxation of the standard
(copositive) LCP formulation is desirable. The convex relaxation introduced in [3]
is convergent in the same weak sense as the original, nonconvex scheme [50]. This
relaxation formulates the integration step as a convex quadratic program (QP) for
which state–of–the–art solvers are available.

In this paper we investigate the performance of several solvers for QP problems
that appear from the relaxed formulation of multirigid body dynamics with contact
and friction. The examples are obtained by simulating granular flow motion in a
system similar to the pebble-bed reactor described in [30]. A description of the
simulated multibody system is given in Section 2.1.

We note that QP approaches are popular in the graphics community for simulat-
ing rigid-body dynamics with contact and friction [24, 33, 40]. Their most common
instance insofar as friction is concerned is probably the box friction model approach.
There, the normal force is prescribed either directly or following a frictionless pre-
solve, which is also a convex QP [33]. Variants of this approach are used as an
option in many major physics engines for games, such as ODE (Open Dynamics
Engine), OpenTissue, and Vortex (some discussion in [15]). All the QPs appearing
in such approaches have a sparsity structure with an incidence graph closely re-
lated to the graph with nodes in the center of the bodies and edges between bodies
in potential contact. The sparsity we encounter here is based on the same graph.
The number of bodies (thousands) and contacts (tens of thousand) we consider is
comparable or larger to the one considered in most of the applications targeted by
such physics engines [24]. We therefore expect that our findings will extend to those
applications as well. We point out, however, that to our knowledge the method in-
troduced in [3] is the only optimization-based method for rigid-body dynamics that
is provably convergent, at least in a weak sense [50], to a continuous-time solution
for any friction coefficient. This observation motivates our choice of subject for the
computational experiment.

The paper has two main parts. In Section 2 we introduce the optimization prob-
lems to be solved. In this context we specialize the QP–formulation of [3] to the
application described in Section 2.1 and address the modeling of the pebble bed
reactor application. We plan to exploit two QP formulations: the primal QP formu-
lation and the dual QP formulation, which takes the form of a bound constrained
minimization problem. For these formulations, four QP-solvers are used to compare
computational efficiency and to analyze ensemble properties of the simulated tra-
jectories. We use two interior-point solvers, MOSEK [1] and OOQP [29] and two
projected gradients solvers (on the dual formulation), TRON [39] and BLMVM



On the use of an optimization based method in the simulation of multi-body systems 3

[14]. A comparison between these solvers is given in Section 3, details of the nu-
merical experiments are given in Section 4, and a summary of our observations is
given in Section 5.

2. Quadratic Programming Subproblems of Time-Stepping Methods

We now discuss the origin and structure of the QP subproblems in the time-
stepping approach in [3]. We will apply the formulation to the problem of the
simulation of the granular flow of the fuel pebbles in a pebble-bed reactor (PBR)
[30]. This example problem has the advantage that we can easily scale it up in
the number of the rigid bodies and contacts, making it ideal for extrapolating the
behavior of the solvers for increasing dimension of the problem.

We present an image of the reactor vessel in Figure 1, with all pebbles at rest.
The rigid bodies – the pebbles – are tennis-ball-sized and contain uranium oxide.
They are extracted from the bottom of the vessel and reinserted through the top
[30]. When fully loaded, the reactor has about 400,000 such bodies, but important
assessments can be extracted from simulations involving a smaller number [46].
The reactor vessel in which the motion of the pebbles is simulated is composed
of a truncated cone and a cylinder that is opened at both ends; see Figure 1. For
modeling purposes, we index the cylindrical surface of the vat by −3, the lateral
surface of the truncated cone by −2, and the bottom of the vat by −1.

Figure 1. Cross-section of the reactor vessel with 3200 pebbles at the end of the simulation. The pebbles
are colored based on the originating position.

Most of the following modeling steps apply to general rigid multibody dynamics.
However, some topics particular to the PBR simulation will be pointed out as they
occur.

2.1. The Model

In this section we describe the various modeling steps that convert a rigid multibody
dynamics problem with contact and friction to a sequence of quadratic programs
such as (2.10). The model is based on the convex relaxation introduced in [3]. The
merits and shortcomings of that relaxation, insofar accuracy of predicting frictional
behavior is concerned, are presented in [3] and are not the subject of this work.
Here, we focus on the setup and resolution of (2.10).

Assume that the rigid-body system is composed of N bodies. The position of
body i is q(i) = (xi, yi, zi, θi, αi, γi)

T , i = 0, ..., N − 1, where the first three com-
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ponents are the Cartesian coordinates of the center (in a fixed inertial frame) and
the last three represent the orientation of a reference point P (i) on the sphere. The
position q of the entire system is obtained by concatenating the positions of each

body, namely, q =
(
q(0)T , q(2)T , ..., q(N−1)T

)T
. In a similar fashion, we define the

generalized velocity of the system to be v ∈ RI 6N , v = Γ(q)
dq

dt
. Here Γ(q) is a

smooth mapping that converts the derivatives of the position coordinates to the
generalized velocities [34]. For rigid bodies, as opposed to material points, Γ(q) is
different from the identity [34].
Nonpenetration constraints. For bodies i, and j, we assume that we have signed
gap functions functions Φ(i,j)(q), such that

Φ(i,j)(q) =

{
< 0 the two bodies penetrate,
= 0 the two bodies are touching,
> 0 the two bodies are separated.

In this case, the nonpenetration constraints simply become

Φ(i,j)(q) ≥ 0.

For PBR, the nonpenetration constraints are imposed between pebble–pebble and
pebble–wall interaction. The constraint indices are (i, j), for (i ∈ {−3, ..., (N − 1)},
j ∈ {0, ..., (N − 1)} and j > i). In addition, the signed gap functions are particu-
larly easy to define. For example, for two spheres of radius R, and with centers of
mass at positions x1, y1, z1 and x2, y2, z2, a signed gap function is

Φ(i,j) = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − 4R2.

The pebble-wall gap functions use the distance from a point to a simple surface
and are also immediate to define.
Contact specifications. For each contact we define the normal and tangential
directions in generalized coordinates as follows. Consider the generic contact de-
picted in Figure 2. Let −→n denote the unit outward normal for the horizontally
aligned body. Let C1 and C2 be the centers of mass for each body, and let −→r 1 and
−→r 2 be the position vectors of the contact point relative to C1 and C2 respectively
(all vectors are represented in world frame coordinates). Then the 3–dimensional
vector −→n is mapped in generalized coordinates into the 12–dimensional vector n,
defined as follows

−→n 7−→ n :=


−→n−→r 1 ×−→n
−−→n

−−→r 2 ×−→n

 . (2.1)

In a similar fashion one obtains the generalized coordinates vectors t1 and t2 from−→
t 1 and

−→
t 2, respectively.

The Coulomb friction model prescribes that the tangential force is inside a disk
proportional to the one in Figure 2. To allow for the use of a quadratic programming
approach (or an LCP in the unrelaxed case), we use a polygonal approximation of
the friction disk in Figure 2(b) [9, 51]. The disk is approximated by an inscribed
polygon, whose quality depends on the number p of tangent directions used.
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We define those p tangent vectors,
−→
d s, by

−→
d s := cos

(
2πs

p

)
−→
t 1 + sin

(
2πs

p

)
−→
t 2, s = 1, ..., p. (2.2)

Clearly the vectors
−→
d s are direction vectors in RI 3, and any point in

span{
−→
d 1, ...,

−→
d p} can be written as a nonnegative linear combination of these

vectors. It is easy to see that the generalized coordinate version of the directions

(a) (b)
Figure 2. (a) Generic contact between two bodies, (b) Tangent space at contact.

in (2.2) are obtained in the same fashion, namely,

ds := cos
(

2πs

p

)
t1 + sin

(
2πs

p

)
t2, s = 1, ..., p. (2.3)

Given that, for a system of N bodies the configuration space (the space where
q lives) has dimension 6N , we embed the contact data in RI 6N . More precisely,
assume that the k-th indexed contact is established between body i (i ≥ 0) and
body j (j > i). The normal direction in the 6N dimensional space is then given by

n(k) =
(
O1,6(i−1),

−→n T
k , (−→r i ×−→n k)T , O1,6(j−i−1),−−→n T

k , (−−→r j ×−→n k)T , O1,6(N−j)

)T
,

(2.4)
where O1,α represents a zero row vector of length α, whenever α > 0 and the empty
vector otherwise. Here nk is the three-dimensional normal vector at the contact k.

In the case of PBR, for a pebble–wall interaction (i, j), i < 0, only the second
nonzero block will contribute to n(k).

In the same fashion one defines the tangential directions d
(k)
s ∈ RI 6N , s = 1, ..., pk,

namely,

d(k)
s =

(
O1,6(i−1),

−→
d T

sk, (
−→r i ×

−→
d sk)T , O1,6(j−i−1),−

−→
d T

sk, (−
−→r j ×

−→
d sk)T , O1,6(N−j)

)T
.

(2.5)
In (2.5), dsk, s = 1, ..., pk are the RI pk direction vectors used in the approximation
of the friction disk at contact k. The matrix associated with the polyhedral ap-
proximation of the friction disk at contact (k) is the matrix having its columns the
directions d

(k)
s , i.e., D(k) ∈ RI 6N×pk , D(k) =

(
d

(k)
1 , ..., d(k)

pk

)
, where pk represents the

number of friction generators for contact (k).
In the formulation of the integration step we will deal with matrices D̂(k) ∈

RI 6N×pk of the form

D̂(k) =
(
n(k) + µd

(k)
1 , ..., n(k) + µd(k)

pk

)
, (2.6)
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where µ, µ ∈ (0, 1] is the friction coefficient, which is assumed to be the same for
all contacts . We are interested in the maximal value of pk (pk < 6N) for which
the matrix D̂(k) has full column rank, rank(D̂(k)) = pk. It is easy to see that for
pk = 3, rank(D̂(k)) = pk, while for pk > 3 we obtain a rank-deficient matrix. This
observation will be used when formulating the integration timestep as a bound–
constrained minimization problem (this is what we call the dual formulation). For
the PBR simulation we choose pk = 3 for all contacts k.
External and inertial forces. We denote by M ∈ RI 6N×6N the generalized mass
matrix of the system. In general, in a fixed coordinate frame, this matrix depends
explicitly on the position q , i.e., M := M(q). We also denote by kapp the sum
between the external forces and the inertial forces. The inertial forces involves
derivatives of M(q) [34].

For the PBR example, we are dealing only with spherical bodies. The generalized
mass matrix is diagonal with positive entries and constant with respect to q [34].
Since the mass matrix is constant, the inertial forces are zero. This implies that,
besides contact forces, the only forces acting on the system are external forces.

For PBR, because of the heaviness of uranium, we can ignore the effect of the
cooling flow over the dynamics [30]. Therefore, we can assume that only gravita-
tional forces are acting, and the (noncontact) applied forces kapp ∈ RI 6N can be
written as

kapp =
(
uT , ..., uT

)T
.

Here u ∈ RI 6, u = (0, 0,−g, 0, 0, 0)T , for some positive constant g.
Linearized active contacts constraints. Given a current position q of the sys-
tem, we compute the set of active contacts by using the signed distance functions
Φ(i,j)(q). Given a positive scalar ε, a contact (k) corresponding to the rigid-body
pair (i, j) is considered active if

Φ(k)(q) = Φ(i,j)(q) ≤ ε.

For a given configuration q, we denote by A(q, ε) the set of all active contacts.
More precisely,

A(q, ε) =
{

k ∈ Z2
+ | (k) = (i, j), Φ(i,j)(q) ≤ ε

}
. (2.7)

If (k) /∈ A(q, ε), the corresponding nonpenetration constraint is simply ignored
by the QP (2.10). If (k) ∈ A(q, ε), then the nonpenetration constraint Φ(i,j) > 0 is
enforced at time tl and position ql by(

n(k)(ql)
)T

v + µ
(
d(k)

s (ql)
)T

v ≥ −1
h

Φ(k)(ql), s = 1, 2, . . . , pk. (2.8)

Here h is the timestep of the scheme. It does not need to be constant for stability
[6], but we choose it so for graphical simplicity. The first and last terms in this
equation are the linearization of the nonpenetration constraint. The last term is
stable as h → 0 [3, 6]. The middle term is unique to the scheme in [3]. Its physical
significance is based on a microscopic realization of surface asperities that result
in macroscopic friction coefficient µ.

It has been shown that the value of ε does not affect the convergence as h → 0
[3, 6]. But its choice has important practical consequences. A value that is too
large results in an exceedingly large QP. The QP is still consistent but may be
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computationally expensive. A value that is too small may result in too many non-
penetration constraints being dropped and in excessive penetration at time step
l +1. An appropriate value for ε should be comparable to the product between the
maximum velocity in the system and the timestep.
Newton’s second law. The discretized version of Newton’s second law is written
at the velocity-impulse level as

M
(
vl+1 − vl

)
− zl+1 = hkapp, (2.9)

where hkapp are the external impulses and zl+1 represent the contact impulses
(normal and tangential/frictional contact impulses):

zl+1 =
∑

k∈A(ql,ε)

pk∑
s=1

β(k)
s

(
n(k)(ql) + µd(k)

s (ql)
)

.

Here M is the mass matrix, and each vector of multipliers satisfies β(k) =(
β

(k)
1 , β

(k)
2 , . . . , β

(k)
pk

)
∈ RI pk and β(k) ≥ 0.

2.2. The Integration Step

In what follows we present the formulation proposed in [3] and its dual. Here, we
consider only the case of totally plastic collisions. The scheme can be modified to
accommodate partially elastic or totally elastic collisions by means of a restitution
coefficient [2]. We point out, however, that the issue of predictive modeling of
simultaneous nonplastic collisions is far from being settled in rigid body dynamics
[16].

2.2.1. Primal Formulation

Let h > 0 denote the size of the integration timestep. We denote by ql the
position and by vl the velocity of the system at time tl = lh. In the optimization-
based time-stepping scheme introduced in [3], the new velocity vl+1 is obtained by
solving the following quadratic problem:

min 1
2vT Mv +

(
f l

)T
v

s.t.
(
n(k)(ql)

)T
v + µ

(
d

(k)
s (ql)

)T
v ≥ − 1

hΦ(k)(ql)
k ∈ A(ql, ε), s = 1, 2, . . . , pk

(2.10)

In (2.10), f l is obtained by the following formula:

f (l) = −vl − hkapp. (2.11)

Equations (2.9) and (2.8) are satisfied as part of the optimality conditions for
(2.10).

2.2.2. Dual Formulation

The dual formulation can be obtained by standard duality techniques. In our
case, we assign the Lagrange multipliers λ to the constraints in (2.10). Then, we
write the optimality conditions for (2.10), and we eliminate v using the positive
definiteness of M . This procedure results in the dual QP program (2.13).
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Let us denote by Al and bl the matrix and the right-hand side, respectively, of
the inequality constraints in (2.10). In terms of the notation introduced in (2.6),
the matrix Al has the form

Al =


(
D̂k1(ql)

)T

...(
D̂kp(ql)

)T

 , (2.12)

where the active set A(ql, ε) = {ki | i = 1, ...p}. The vector bl is composed of block
vectors in RI 3, with the block corresponding to contact ki having all its components

equal to −1
h

Φ(ki)(ql). In the notation described above, the dual problem takes the
form

min 1
2λT P lλ +

(
κl

)T
λ,

s.t. λ ≥ 0
(2.13)

where P l = AlM−1
(
Al

)T and κl = −bl −Alf l.
The dual formulation (2.13) is a bound-constrained quadratic programming prob-

lem. Therefore, for solving it, we can use not only general-purpose quadratic pro-
gramming algorithms, such as interior points, but also iterative algorithms of the
projected gradient type. Therefore, it is a good formulation for benchmarking the
performance of various solvers for quadratic programming.

2.3. Pointed friction cone and duality

Consider the ε-active set A(ql, ε), which is obtained from (2.7) for the current
configuration ql. For k ∈ A(ql, ε) and let D̃(k) denote the matrix of generalized
tangential directions, namely,

D̃(k)(ql) := D̃(k) =
(
d

(k)
1 , d

(k)
2 , . . . , d(k)

pk

)
, (2.14)

where the generalized tangential directions d
(k)
s := d

(k)
s (ql), s = 1, 2, . . . , pk are

given in (2.3). We now define the ε− active friction cone FC(ql, ε) by

FC(ql, ε) =

 ∑
k∈A(ql,ε)

D̃(k)β(k)
∣∣∣ β(k) ∈ RI pk , β(k) ≥ 0,

 . (2.15)

We say that the friction cone is pointed if the following implication holds:

z =
∑

k∈A(ql,ε)

D̃(k)β(k) ∈ FC(ql, ε), z = 0 ⇒ β(k) = 0,∀ k ∈ A(ql, ε). (2.16)

In other words FC(ql, ε) is pointed if it doesn’t contain any proper subspaces.
It has been shown in [8] that pointedness of the friction cone implies that the

Mangasarian-Fromowitz constraint qualification (MFCQ) holds for the convex pro-
gram (2.10). Whenever MFCQ holds the multipliers λ in (2.13) are bounded [28].
Therefore, pointedness of the friction cone together with the existence of a feasible
point for (2.10) guarantees no duality gap. This result is essential when comparing
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QP solvers that use either the primal or the dual formulation. Loss of the pointed-
ness regularity assumption corresponds, from a physical point of view, to jamming
[4], a phenomenon that does not occur in our simulations.

For isolated QPs we can compare the correctness of the results obtained from
solving the two different formulations, by either measuring the duality gap or by
passing from a dual solution to its primal correspondent. When running an entire
simulation, however, the use of different solvers will likely cause totally different
individual configurations. This is motivated by the fact that, by nature, the sys-
tem is chaotic. Therefore, to measure the correctness of an entire simulation, at
least partially, we use ensemble properties, such as the kinetic energy of the entire
system.

3. Algorithms and Software Packages Used

We now describe the properties of several packages used to solve (2.13). We use
two types of packages. The first, of the interior-point type, OOQP and MOSEK,
solve the primal-dual formulation of both (2.13) and (2.10). For the OOQP solver,
we use two formulations, one of which involves our adaptation of the CHOLMOD
linear algebra package for use with OOQP. The second, of the projected gradient
type, TRON and BLVM, solve the dual problem (2.13).

3.1. OOQP

OOQP (Object-Oriented software for Quadratic Programming) is a C++ package
for solving convex quadratic programming problems. It is based on primal-dual
interior-point methods and can be used to solve a variety of forms of quadratic
problems such as general sparse QPs, QPs with ”box” constraints, QPs coming
from support vector machines, and Huber regression problems. Its object-oriented
design allows easy adaptation for specialized QP formulations or use of new linear
algebra solvers.

In our experiments OOQP’s general sparse formulation is used to solve the primal
form (2.10). Two distinct linear algebra packages are used: MA27 for which an
interface is included in OOQP distribution and CHOLMOD for which we developed
an interface and reformulated the linear systems. We denote the two versions of
OOQP by OOQP-MA27 and OOQP-CHOL, respectively.

3.1.1. OOQP general sparse formulation

In OOQP the convex quadratic problem subject to linear constraints is consid-
ered in the following general form:

minimize 1
2xT Qx + cT x

subj to: Ax = b
cl ≤ Cx ≤ cu
xl ≤ x ≤ xu,

(3.17)

where Q ∈ RI n×n , c ∈ RI n, A ∈ RI my×n, C ∈ RI mz×n, cl, cu ∈ RI mz , and xl, xu ∈
RI n.

It is well known that at each iteration of the interior-point methods one or more
linear systems need to be solved. In what follows, we describe the way OOQP
manages the KKT conditions and builds the linear systems.

The Lagrangian function corresponding to the quadratic problem (QP) (3.17) is
L(x) = 1

2xT Qx + cT x + yT (b − Ax) + λT (cl − Cx) + πT (Cx − cu) + γT (xl − x) +
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φT (x− xu); hence, the KKT conditions can be written as follows:

Qx−AT y − CT λ + CT π − γ + φ + c = 0

Ax = b

0 ≤ Cx− cl = t ⊥ λ ≥ 0

0 ≤ cu − Cx = u ⊥ π ≥ 0

0 ≤ x− xl = v ⊥ γ ≥ 0

0 ≤ xu − x = w ⊥ φ ≥ 0.

The interior-point iterations consist of solving the perturbed KKT systems

F (x, y, t, u, v, w, λ, π, γ, φ) =



Qx−AT y − CT λ + CT π − γ + φ + c
−Ax + b

Cx− t− cl
−Cx− u + cu

x− v − xl
−x− w + xu

λt− µke
πu− µke
γv − µke
φw − µke


= 0,

for a sequence of positive {µk} that converges to zero, while maintaining the pos-
itiveness of t, u, v, w, λ, π, γ, φ. The Newton’s method is used to (approximately)
solve the above nonlinear system, so the linear algebra consists of solving linear
systems of form F ′∆d = −F , where the Jacobian F ′ is given by

F ′ =



Q −AT 0 0 0 0 −CT CT −I I
−A 0 0 0 0 0 0 0 0 0
C 0 −I 0 0 0 0 0 0 0
−C 0 0 −I 0 0 0 0 0 0
I 0 0 0 −I 0 0 0 0 0
−I 0 0 0 0 −I 0 0 0 0
0 0 Λ 0 0 0 T 0 0 0
0 0 0 Π 0 0 0 U 0 0
0 0 0 0 Γ 0 0 0 V 0
0 0 0 0 0 Φ 0 0 0 W


,

with Λ = diag(λ), Π = diag(π), Γ = diag(γ), Φ = diag(φ), T = diag(t), U =
diag(u), V = diag(v), and W = diag(w).

The remaining of this section goes into the details of solving linear system
F ′∆d = −F . Using the expression of F ′, we can write the equivalent form

Q∆x−AT ∆y − CT ∆λ + CT ∆π −∆γ + ∆φ = rQ
A∆x = ry

C∆x−∆t = rt
−C∆x−∆u = ru

∆x−∆v = rv
−∆x−∆w = rw
Λ∆t + T∆λ = rλ

Π∆u + U∆π = rπ
Γ∆v + V ∆γ = rγ

Φ∆w + W∆φ = rφ.

(3.18)
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The exact form −F of the right-hand side is not of interest in this discussion of the
linear algebra layer since it is specific to the interior-point algorithm. We denoted
the right-hand side vectors by rQ, ry, rt, ru, rv,rw, rλ,rπ, rγ , and rφ.

Using equations 5, 6, 9, and 10 from (3.18), we can express ∆γ − ∆φ =
−V −1Γ∆v + W−1Φ∆w + V −1rγ − W−1rφ = −V −1Γ(∆x − rv) + W−1Φ(−∆x −
rw) + V −1rγ −W−1rφ. And if we denote D1 = V −1Γ + W−1Φ, then

∆γ −∆φ = −D1∆x + (V −1rγ −W−1rφ + V −1Γrv −W−1Φrw). (3.19)

Let ∆z = ∆λ −∆π. From the sixth equation we get ∆λ = −T−1Λ∆t + T−1rλ

and from the seventh equation ∆π = −U−1Π∆u + U−1rπ. We also use the third
and fourth equation to get ∆z = −T−1Λ(C∆x−rt)+U−1Π(−C∆x−ru)+T−1rλ−
U−1rπ = −(T−1Λ + U−1Π)C∆x + T−1rλ −U−1rπ + T−1Λrt −U−1Πru. Therefore
we can write

C∆x + D−1
2 ∆z = D−1

2 (T−1rλ − U−1rπ + T−1Λrt − U−1Πru), (3.20)

where D2 = T−1Λ + U−1Π.
Both D−1

2 and D−1
1 exist, since T−1Λ + U−1Π and V −1Γ + W−1Φ are diagonal

matrices with strictly positive diagonal entries. We substitute (3.19) in the first
equation of (3.18) and use (3.20) and the second equation from (3.18) to obtain{

(Q + D1)∆x−AT ∆y − CT ∆z = rQ
A∆x = ry

C∆x + D−1
2 ∆z = rz

(3.21)

where rQ = rQ + (V −1rγ − W−1rφ + V −1Γrv − W−1Φrw), ry = ry and rz =
D−1

2 (T−1rλ − U−1rπ + T−1Λrt − U−1Πru.
Once the solution (∆x,∆y, ∆z) of (3.21) is found, the unknowns

∆t, ∆u, ∆v,∆w,∆λ, ∆π,∆γ, and ∆φ can be computed by using only diago-
nal matrix-vector products and vector-vector additions as follows:

∆t = C∆x + rt
∆u = −C∆x + ru
∆v = ∆x− rv
∆w = −∆x− rw

∆λ = T−1(rλ − Λ∆t)
∆π = U−1(rπ −Π∆u)
∆γ = V −1(rγ − Γ∆v)
∆φ = W−1(rφ − Φ∆w).

OOQP solves the symmetric system (3.22) obtained by performing the substitu-
tion (∆x,∆y, ∆z) = (∆x̃,−∆ỹ,−∆z̃) in (3.21):[

Q + D1 AT CT

A 0 0
C 0 −D−1

2

] [
∆x̃
∆ỹ
∆z̃

]
=

[
r̃x
r̃y
r̃z

]
. (3.22)

3.1.2. About OOQP-MA27

The linear system (3.22) is known in the interior-point community as the aug-
mented system. OOQP’s linear algebra layer for sparse general convex quadratic
problems solves the augmented system by using a sparse symmetric indefinite lin-
ear solver. The sparse, symmetric, indefinite linear systems are solved by using a
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Bunch-Parlett factorization for a matrix A. Such a factorization produces permu-
tation matrices P , lower triangular matrix L, and the block diagonal matrix D
with nonsingular 1 × 1 and 2 × 2 blocks that satisfy PAP T = LDLT . They are
applied to the linear system (3.22).

The OOQP distribution contains interfaces to MA27 [23] and to the newer MA57
[22] linear solvers contained in Harwell Subroutine Library (HSL). We use MA27
because the MA57 solver is not available (free) for U.S. academics. The HSL code
MA27 is a collection of FORTRAN routines for solving sparse systems of linear
equations by a variant of Gauss elimination. The code and more documentation
can be found at http://hsl.rl.ac.uk/archive/hslarchive/packages/packages.html.

3.1.3. About our implementation OOQP-CHOL

In what follows we present the implementation of a new linear algebra layer in
OOQP. As we mentioned, the OOQP’s default linear algebra layer solve the indef-
inite symmetric system (3.22). One may take advantage of the particular structure
of this system and perform further block elimination. A simple algebraic manipu-
lation of the third equation in (3.22) reveals

∆z̃ = D2C∆x̃−D2r̃z. (3.23)

By substituting (3.23) in the first equation of (3.22), we reduced the linear system
to {

(Q + CT D2C + D1)∆x̃ + AT ∆ỹ = r̃x + CT D2r̃z
A∆x = r̃y.

(3.24)

We express ∆x̃ in terms of ∆ỹ by multiplying the first equation of (3.24) with
the inverse of (Q + CT D2C + D1). Notice that M1 := (Q + CT D2C + D1) is al-
ways invertible and symmetric positive definite since Q and CT D2C are symmetric
positive semidefinite and D1 is a diagonal matrix with strictly positive diagonal
entries. Using the new expression of ∆x̃, we rewrite the second equation of (3.24)
as

−AM−1
1 AT ∆ỹ + AM−1

1 (r̃x + CT D2r̃z) = r̃y.

We denote M2 = AM−1
1 AT and obtain the following expression for ∆ỹ

M2∆ỹ = AM−1
1 (r̃x + CT D2r̃z)− r̃y. (3.25)

Once ∆ỹ is known, ∆x̃ can be obtained from

M1∆x̃ = −AT ∆ỹ + r̃x + CT D2r̃z. (3.26)

As mentioned, M1 is a symmetric positive definite matrix. This implies that
M2 = AM−1

1 AT is also symmetric positive definite. Hence, the use of a Cholesky-
based linear solver for solving (3.25) and (3.26) is an appropriate choice.

Performance, reliability, and availability were the main aspects we considered
while choosing a sparse direct solver for symmetric positive definite linear systems
of equations. We chose CHOLMOD 1.4 [17–19, 56] based on the evaluations from
[31] and its ready availability.

In what follows, we describe how our new linear algebra layer within OOQP
manages to solve (3.26) and (3.25) for ∆x̃ and ∆ỹ, respectively. The two interior-
point methods implemented in OOQP, Mehrotra and Gondzio, use one matrix
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factorization per iteration and at least two backsolves. In other words, at least two
linear systems having the same system matrix have to be solved at each iteration
of the interior-point algorithm. Therefore, any factorization and other work that
is not dependent on the right-hand side must be performed once in the so-called
factorization phase. Any other right-hand-side dependent operation is accomplished
in the solve phase.

At any iteration of the interior-point method, the factorization phase consists of

• Cholesky factorization M1 = L1L
T
1 ;

• computing X = L−1
1 AT by performing my backsolves: L1X = AT ;

• computing M2 = XT X;
• Cholesky factorization M2 = L2L

T
2 .

The solve phase computes ∆ỹ, then ∆x̃, and finally ∆z̃ from (3.25), (3.26), and
(3.23), respectively. It consist of

• computing r1 := M−1
1 (r̃x + CT D2r̃z) from (3.25) by performing a backsolve

and a forward substitution: L1L
T
1 r1 = r̃x + CT D2r̃z;

• computing r2 := Ar1 − r̃y;
• finding ∆ỹ from (3.25) by performing a backsolve and a forward substitution:

L2L
T
2 ∆ỹ = r2;

• computing the right-hand side r3 := −AT ∆ỹ + r̃x + CT D2r̃z from (3.26)
• finding ∆x̃ from (3.26) by performing a backsolve and a forward substitution:

L1L
T
1 ∆x̃ = r3;

• finding ∆z̃ from (3.23).

Before describing the way CHOLMOD was integrated in our new linear algebra
in OOQP, we give some of the main concepts related to the factorization of the
(positive definite) matrices. The CHOLMOD factorization of a matrix is split in two
parts. The first is the so-called symbolic analysis and consists of computations that
typically depend only on the nonzero pattern, not the numerical values. The main
duty of this phase is to find a permutation of the matrix so that the amount of fill-in
in the factors is minimized (or at least significantly decreased). This is also known
as finding the fill-reducing ordering. The symbolic analysis phase also includes the
symbolic factorization, which consists of finding the explicit representation of the
nonzero pattern of the factor(s). The second part of the CHOLMOD factorization
process is the numerical factorization based on a Cholesky-based algorithm. An
important observation is that the symbolic analysis is usually much more expensive
than the numerical factorization.

There is a key aspect in using CHOLMOD in the context of interior-point meth-
ods. Since the numerical factorization is based on the Cholesky algorithm, no nu-
merical pivoting is needed to maintain numerical stability. This implies that the
permutation found by the symbolic analysis does not have to be recomputed when
factorizing a matrix with different numerical values but the same sparsity pattern.

On the other hand, the matrices M1 and M2 from (3.26) and (3.25) have a special
property that turns out to be crucial in our discussion. During the iterations of the
interior-point method, only matrices D1 and D2 change. Since they are diagonal
matrices (with positive diagonal entries), we obtain that the sparsity pattern of
M1 remains the same during the interior-point iterations. Consequently, M−1

1 has
the same pattern, which implies that the structure of M2 remains the same. Our
code incorporates the above observations. The symbolic analysis phase is done
only once at the first iteration of the interior-point method. Any other subsequent
factorization need is backed up by a fast CHOLMOD numerical factorization.

CHOLMOD 1.4 offers the possibility to choose between up to nine fill-reducing
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ordering heuristics and two symbolic factorization methods. In our implementa-
tion, we let CHOLMOD decide on the best fill-reducing and symbolic factorization
methods. Since both M1 and M2 have the special form AAT , the usual choices of
CHOLMOD were COLAMD for fill-reducing ordering and supernodal for symbolic
factorization.

3.2. TRON

TRON is a trust region Newton method for bound constrained optimization prob-
lems. The algorithm uses a quadratic model function, projected searches during
the subspace minimization phase and a preconditioned conjugate gradient method
to determine the minor iterates. The limited memory preconditioner used is the
incomplete Cholesky factorization of [38].

The Cauchy step at iteration k, sC
k is of the form sk(αk), where the function

sk : RI → RI n is defined by

sk(α) = P [xk − α∇f(xk)]− xk.

Here P is the projection onto the (bound constrained) feasible set, xk is the current
iterate and f the objective function. An iterative scheme that is guaranteed to
terminate in a finite number of steps is used to compute the Cauchy point by
generating a sequence

{
α

(l)
k

}
of trial values. The sequence can be either decreasing

or increasing, based on the value of α
(0)
k , where α

(0)
k is set to 1 in the (main-

loop/major) first iteration and αk−1 otherwise.
Once the Cauchy point is obtained, a Newton step is sought subject to trust

region constraints and with an active set choice determined by the one of the
Cauchy point. If sufficient decrease is obtained compared to the one produced by
the Cauchy point, the step is accepted. The algorithm is superlinearily convergent
for nonlinear objective function.

3.3. BLMVM

BLMVM [14] is a projected gradient solver for nonlinear bound-constrained op-
timization problems. Like the unconstrained BFGS method, BLMVM creates a
convex quadratic model function

mk(d) = f(xk) +∇f(xk)T d +
1
2
dT Bkd,

where f(x) is the objective function, xk is the current iterate, and the matrix Bk is
updated at each iteration using correction pairs sk and yk. Unlike the unconstrained
BFGS method, BLMVM defines the correction pairs sk and yk by

sk = xk+1 − xk, yk = TΩ∇f(xk+1)− TΩ∇f(xk).

Here TΩ is the projection operator, with the ith component of TΩ∇f(x) given by

(TΩ∇f(x))i =

{
∂if(x) if xi ∈ (li, ui)
min{∂if(x), 0} if xi = li
max{∂if(x), 0} if xi = ui



On the use of an optimization based method in the simulation of multi-body systems 15

where ∂if(x) is the partial derivative of f with respect to the ith variable xi and
Ω = {x | l ≤ x ≤ u} is the bound constrained feasible set.

To reduce the cost of storing the inverse Hessian approximation, BLMVM uses
the limited memory BFGS method (L-BFGS). The algorithm uses a projected line
search to enforce the bounds on the variables.

3.4. MOSEK

The MOSEK Optimization Software (www.mosek.com) is a collection of tools for
solution of large-scale optimization problems. MOSEK provides specialized solvers
for linear programming, mixed integer programming, and many types of nonlin-
ear and convex optimization problems, such as convex quadratic problems, conic
quadratic problems, and quadratically constrained problems. In particular, for solv-
ing convex quadratic problems subject to linear constraints, MOSEK employs an
homogeneous interior-point algorithm for monotone complementarity problems [1].
This homogeneous model is able to solve the problem without any regularity as-
sumption on the existence of optimal, feasible or strictly interior feasible points.
If the problem has a solution, the algorithm generates a sequence that approaches
feasibility and optimality simultaneously. If the problem is infeasible, it generates
a sequence that converges to a certificate proving infeasibility. The algorithm can
start at any positive point (feasible or infeasible) and converges in no more than
O(
√

n log(1/ε) iterations, the best-known complexity for linear complementarity
problems. In our experiments we used MOSEK 4.0 through the C optimizer API
to solve the primal form (2.10).

4. Numerical Results

In the section we present details of applying the algorithms and solvers from Section
3.

4.1. Environment and Solver Configuration

We used RedHat Enterprise Linux 5 to run our experiments. The jobs were sub-
mitted to a SUN Grid Engine 6.0u8 running on 10 dual-processor computers each
having between 2 GB and 4 GB of physical memory. All the processors in the grid
are Pentium 4 at 3.06 MHz with 512KB L2 cache. Our simulation code uses one
processor at the moment.

The simulation code was written in C and C++ and compiled by using GNU
C and C++ compilers. The optimization solvers and their requirements were also
compiled by using GNU tools. The code optimization flag was set to -O3 for all
compilers.

We used all software packages with their default stopping criteria. Changing
these parameters may affect the conclusions but also make the results difficult to
report. The difficulty of projected gradient methods, such as those BLMVM and
TRON use, to obtain a solution for very stringent tolerance is well documented,
and we do not investigate that here. Our goal is to provide a useful benchmark for
engineering applications, which in many cases accept errors of the order of those
in the stopping criteria of BLMVM and TRON. We thus believe that the fairest
comparison of usefulness of these packages is for their default settings.

We used for both OOQP-MA27 and OOQP-CHOL the default stopping criteria,
which consist of relative gap µ < 10−8 and relative norm of the residual less than
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10−8. The relative norm of the residual is the ratio between the norm of the residual
and the absolute value of the largest magnitude element in the problem’s data. We
also run MOSEK with the default stopping parameters; namely, primal and dual
feasibility tolerance and relative gap less than 10−8. TRON and BLMVM consider
a problem solved when when the norm of the gradient falls under 10−4 and 10−3,
respectively.

4.2. Examples Generation

In all of our experiments, in a unitless representation, the dimensions of the vat
are 60 for the radius of the cylinder and 20 for the small radius of the truncated
cone (see Figure 1). The height of the cylinder and the truncated cone are 80 and
40, respectively. The radius of each pebble is set to 1.

For the simulation experiments the pebbles are initially randomly arranged in
horizontal planes. On each horizontal plane the pebbles are distributed in several
inner circles. For the optimization experiments we also place pebbles on the bottom
of the vat. The number of such bodies is approximately one-fourth the number of
the suspended ones. Since we are interested in the situation when some of the
falling balls are still in the air, while the others are interacting with the walls of
the vat and with the pebbles from the bottom of the vat, the optimization problem
is chosen after several seconds of simulation.

For any configuration, we solve the problem (2.13), which is set up as described
in Section 2.1 for given ql, vl and time step h. This produces the multipliers λ(l+1).
We replace them in (2.9), to obtain v(l+1), the solution of (2.10). After this, the
new position variables are obtained from q(l+1) = q(l) + hΓ(q(l))v(l+1).

4.3. Total Kinetic Energy Results

It is well known that granular flow simulation is chaotic [41]. This means that
the tiniest difference in position of the particles at a given time step is amplified
exponentially in time. Therefore, comparing the outcome of the various solvers for
individual particles is essentially hopeless beyond extremely small and few time
steps. In order to compare the prediction of the various solvers, it may be more
illuminating to use aggregate quantities. To that end, a meaningful quantity is the
total kinetic energy.

The first plot of Figure 3 shows how the kinetic energy of a system consisting
of 800 pebbles changes in time. The definition of the kinetic energy is E(t) =
1
2
v(t)T Mv(t). Its value was found by simulating the same configuration with the

four solvers. In the second plot we represent the relative energy of found by OOQP-
MA27, OOQP-CHOL, and MOSEK with respect to the energy found by BLMVM.
The relative energy is Erel = |Es−Eb|

Eb
, where Eb and Es are the energies found by

making use of BLMVM and one of the remaining solvers, respectively.
We note that the relative error in energy is insignificant, in physical interpretation

terms, except after a large amount of simulation time. We also note, however, that
this error occurs only at very small value of the kinetic energy (essentially, around
the time the pebbles have stopped). They are due primarily to a small denominator;
the corresponding absolute value is insignificant. In addition, as can be seen from
Tables 4.1, 4.2, and 4.3 , some of the errors are due to the fact that BLMVM and
TRON are iterative solvers that are stopped with larger error in both primal and
dual than the interior point solvers.
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Figure 3. Energy dependence on time.

4.4. Performance Results

The tests involving MOSEK are performed on a Windows XP SP2 machine with
1.5GB memory running a P4 2.8 MHz processor with 512 KB L2 cache. On Win-
dows, MOSEK was statically linked using Microsoft Visual Studio 7.1. We were not
able to test MOSEK on Linux because only the Windows license was available to
us. We are aware that the use of different hardwares and operating systems leads
to different execution times. To have an idea about how big this difference is, we
ran multiple simulations on both Windows and Linux computers. The simulations
with OOQP-CHOL and BLMVM as the optimization solvers revealed that the ex-
ecution is 30-35 percent slower on the Windows machine. One should keep in mind
this difference when comparing execution times obtained by MOSEK on Windows
with the execution times of the other four solvers on Linux.

We present two types of experiments comparing the solver performance. In the
first experiment, the simulation test, we compare the solver performance for all
the QPs encountered in the simulation, for different total numbers of pebbles. For
such comparisons, QPs with the same number of dual variables are not necessarily
the same. Therefore, different QPs with the same number of dual variables may
be solved with different performance parameters, and the comparisons must be
carried out only in terms of trends. This can be seen in the scatter plots of Figures
4 and 5.

A second experiment, the optimization test, progresses the simulation with one
solver, OOQP-CHOL, up to a time where the QP to be solved is sufficiently large.
At that point, the same QP is solved by all software packages, and the performance
results are compared on the same problem.

4.4.1. Simulation test

Tables 4.1, 4.2, and 4.3 show the performance of each optimization solver in run-
ning simulations of 800, 1600, and 3200 pebbles, respectively. The second column
indicates whether the primal (2.10) or dual (2.13) form was solved. The third col-
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Table 4.1. Performance for 800 pebbles and h = 0.05.

Solver Pri/Dual Primal Infeas Int. steps Total Time Avg time
BLMVM Dual 1.482e-04 324 9738.880 30.058
OOQP MA27 Both 0 370 59693.310 161.330
OOQP Chol Both 0 371 9351.450 25.206
TRON Dual 1.070e-02 487 282763.981 580.624
Mosek∗ Both 0 407 1120797.148 2753.801

∗ Reported data is obtained on Windows.

Table 4.2. Performance for 1600 pebbles and h = 0.05

Solver Primal/Dual Primal Infeas Int. steps Total Time Avg time
BLMVM Dual 6.235e-05 394 73147.070 185.652
OOQP MA27 Both 0 319 345773.404 1083.929
OOQP Chol Both 0 310 38097.440 122.894

Table 4.3. Performance for 3200 pebbles and h = 0.05

Solver Primal/Dual Primal Infeas Int. steps Total Time Avg time Kin energy
BLMVM Dual 4.946e-05 284 221411.620 779.618 2.3424
OOQP Chol Both 0 296 175534.870 593.023 2.4757

umn, Primal Infeas lists the primal infeasibility at the last integration step. The
number of integration steps needed to run the simulation is shown in the fourth
column. The last two columns represent the total time in seconds needed for simu-
lation and the average time in seconds per integration step. The simulations were
stopped when the kinetic energy fell under a specific value: 0.2 for 800 pebbles, 0.8
for 1600, and 2.5 for 3200.

Both MOSEK and TRON crash while running the simulation involving 1600
pebbles. When solving the optimization problem from the first integration step
MOSEK freezes in the preprocessing phase for several hours and then crashes. The
memory usage before the abnormal termination is close to the maximum available.
We believe that the lack of memory causes the failure of a memory allocation
routine and consequently, MOSEK’s crash. Although TRON was able to run the
first several integration steps, as soon as the pebbles start to interact with the
walls, and the size of the dual increases, it crashes. The source of the crash is a
memory allocation failure in the FORTRAN 77 code. An important observation is
that there is enough physical memory to satisfy the allocation request. Hence the
failure is probably caused by FORTRAN 77 memory management routines. We
present the memory use for BLMVM, OOQP, and TRON for this test in Figure 4.

TRON and MOSEK were not used for the experiment involving 3200 pebbles.
The same simulation with OOQP MA27 was stopped because of the huge amount
of time needed to solve the optimization problems (more than 20 times the time
needed by OOQP-Chol for the same integration step).

4.4.2. Optimization test

In the simulation test the solvers may solve different problems at each step since
the system trajectories may be different due to accumulation of the numerical error.
In this test, we compare the performance of all solvers for the same QP problem.

As described in Section 4.2, the optimization problems are chosen from a sim-
ulation of 1000 pebbles (800 staying on the bottom of the vat and 200 falling)
after 3.3 seconds. The integration was done by using the timestep h = 0.01 for
Table 4.4 and h = 0.05 for Table 4.5. Tables 4.4 and 4.5 list the solver name, the
formulation solved, the number of unknowns in primal and dual, the number of
iterations needed by each solver to solve the optimization problem, the average
time per iteration, and the total time taken to solve the problem.
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Figure 4. Memory performance.
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Figure 5. Execution time dependence on number of constraints.

Table 4.4. Optimization problem from the simulation of 1000 pebbles with h = 0.01

Solver Primal/Dual Primal Size Dual Size No. Iter Average Time Total Time
BLMVM Dual 6000 62826 2501 0.127 318.016
OOQP Ma27 Primal/Dual 6000 62826 33 21.120 696.984
OOQP Chol Prima/Dual 6000 62826 33 3.115 102.812
Mosek∗ Primal/Dual 6000 62826 24 465.362 11168.688
TRON Dual 6000 62826 CRASH

∗ Reported data is obtained on Windows.
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Figure 6. Execution time dependence on number of constraints.

Table 4.5. Optimization problem from the simulation of 1000 pebbles with h = 0.05

Solver Primal/Dual Primal Size Dual Size No. Iter Average Time Total Time
BLMVM Dual 6000 62760 1729 0.128 221.640
OOQP Ma27 Primal/Dual 6000 62760 31 21.351 661.881
OOQP Chol Prima/Dual 6000 62760 31 3.016 93.500
Mosek∗ Primal/Dual 6000 62760 24 456.534 10956.832
TRON Dual 6000 62760 CRASH

∗ Reported data is obtained on Windows.

4.5. Discussion of the Results

We conclude that the ranking from most to least performing of the five solvers is
OOQP-Chol (our linear algebra interface and implementation), BLMVM, OOQP-
MA27, TRON, and MOSEK. This conclusion is sustained for both the simulation
test, by results in Tables 4.1, 4.2 and 4.3 and in Figures 5 and 6, and the optimiza-
tion test, by results in Tables 4.4 and 4.5.

The tabulated results show that this ordering holds on average, whereas the
figures show that these results hold even when accounting for the spread of perfor-
mance criteria for the same dual size. In addition, we also see from Figure 4 that
both interior-point algorithms need more memory only by a factor of between 2 and
3 compared to BLMVM, which, as a limited-memory method, is quite memory-
use conscious. From the memory results, it is also interesting to extrapolate what
size of a problem will be held by a desktop. If the trends in Figure 4 hold, then
a 4 GB architecture can hold a 150, 000-pebble configuration, whereas a 32 GB
architecture can hold a 600, 000-pebble configuration.

We note that our OOQP-Chol implementation, using open source tools, is consis-
tently a factor of 7 faster (and sometimes more than 20 times faster) compared to
the OOQP-MA27 implementation. We also note that the time to solution perfor-
mance of BLMVM and both OOQP implementation behaves fairly close to linear
with the size of the problem. So both algorithms scale reasonably for this problem.
In addition, our kinetic energy monitoring reveals that all solvers give comparable
results.

Several caveats should accompany our conclusions. The first is that we do not re-
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quire BLMVM to solve the problem to the same precision as for the interior-point
solvers. Nonetheless, we believe that its results are useful, for reasons described
in Subsection 4.1. The second is that, for license issues, we were not able to run
MOSEK on the same architecture as the other solvers. Given our experience with
the performance discount between Windows and Linux, we believe that the conclu-
sions would not be change when running MOSEK on Linux, for reasons described
in Section 4.4. We also note that the class of problems solved here, while of wide en-
gineering interest, is limited insofar type of QPs encountered. For other QP types,
it is conceivable that the performance ranking will change.

5. Conclusions and Future Work

We investigate the performance of four software packages for the resolution of
quadratic programming problems with bound constraints that appear in the reso-
lution of rigid multibody dynamics with contact and friction. These packages are
TRON [38], BLMVM [14], MOSEK [1], and OOQP [29]. OOQP is investigated
both with the default MA27 linear algebra and with our new implementation us-
ing Cholesky factorizations by means of the CHOLMOD package. We call the first
instance OOQP-MA27 and the second OOQP-Chol.

We conclude that, for such problems, our OOQP-Chol implementation is the
fastest of all the packages tested. It consistently uses only about three times more
memory than BLMVM, while achieving far higher precision levels. Its behavior
with the size of the problem is predictable, as can be seen from Figures 4, 5, and
6.

An important further research question is whether this performance holds for a
parallel implementation. We note that a multithreaded version of CHOLMOD ex-
ists (see http://www.cise.ufl.edu/research/sparse/cholmod/) but does not currently
exhibit good performance because of BLAS issues; these are expected to be fixed
in the near future. The good parallel speedup of BLMVM, the closest competitor
in terms of execution speed, is well documented [14].

Another important direction is to work directly with the disk constraint on the
tangential force. This results in conic constraints on the contact force, which, in
turn, leads to a quadratic program with conic constraints. We have recently shown
that this formulation leads to a conic complementarity problem [11, 52]. We can
solve this problem using a splitting scheme, of the Gauss-Seidel or Jacobi type
[11]. At the moment, however, the set of codes available to us that support conic
constraints includes only MOSEK, so we are not yet in the position to profile such
codes for rigid multibody applications.
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